SG03/Cellular Senescence Detection Kit – SPiDER-βGal-细胞衰老检测试剂盒

货号:SG03
细胞衰老检测试剂盒SPiDERβGal
Cellular Senescence Detection Kit – SPiDER-βGal
储存条件:0-5度保存
运输条件:室温

特点:

活细胞和固定细胞均可染色
可用共聚焦显微镜或流式细胞仪检测
可固定后与抗体共染色

选择规格:5assays

凑单关联产品TOP5

NO.1. Cell Counting Kit-8 细胞增殖毒性检测
NO.2. Mitophagy Detection Kit 线粒体自噬
NO.3. Cell Cycle Assay Kit 细胞周期检测
NO.4. Caspase-3 Assay Kit -Colorimetric 细胞凋亡检测
NO.5. Cellstain- Hoechst 33342 solution 细胞核染色检测

试剂盒内含
5 assays
[5 assays: 35 mm dish]
SPiDER-BGal X1
Bafilomycin A1 X1

产品概述

正常细胞的DNA损伤是由细胞的不断分裂和氧化应激引起。在没有修复DNA损伤的情况下,为了抑制细胞的癌化,需要不可逆地终止DNA损伤细胞的分裂。细胞衰老是一种可以不可逆地终止DNA损伤细胞分裂的状态,它可以抑制DNA受损细胞的生长。SA-β-gal (细胞衰老β-半乳糖苷酶)在衰老细胞中过表达,被广泛作为细胞衰老的标识之一。用X-gal染色检测SA-β-gal是一种常用的方法,但此方法存在几个缺点:

1)由于细胞透膜性差,需要固定细胞。

2)由于很难区分染色细胞和未染色细胞,所以定量困难。

3)染色时间长。

本试剂盒检测SA-β-gal灵敏度高,方法简便。SPiDER-βGal是一种检测β-gal的新型试剂,具有细胞透膜性高,胞内荧光维持时间长的特点。本试剂盒不仅可以特异性地检测到活细胞中的SA-β-gal(用Bafilomycin A1抑制内源性β-galactosidase的活性),也可以检测到固定细胞中的SA-β-gal(用McIlvaine缓冲液 (pH 6.0)。由于SPiDER-βGal和SA-β-gal反应后会产生很强且持续的荧光,因此SPiDER-βGal可被用于流式细胞仪来进行定量分析。

原理

 

由于该试剂盒中的β-半乳糖苷酶检测试剂SPiDER-βGal具有细胞膜通透性,因此无需特别的细胞膜通透性处理或固定细胞,即可直接检测活细胞。穿透细胞膜的SPiDER-βGal通过与SA-β-gal反应发出荧光,并会与附近的蛋白质共价结合。另外,通过在加SPiDER-βGal之前,添加试剂盒内含的Bafilomycin A1,可抑制活细胞中内源性β-半乳糖苷酶的活性,并且抑制背景的状态下检测到SA-β-gal的荧光。

荧光特性

SPiDER-βGal和β-半乳糖苷酶反应的激发和发射光谱图

<推荐波长>

Ex:500~540 nm

Em:530~570 nm

用共聚焦显微镜或流式细胞仪(请选择488 nm激发波长)

操作步骤

 

产品优势

特点1:适用于活细胞和固定细胞

检测固定化细胞时,不需要添加Bafilomycin A1,按照说明书记载的操作流程检测SA-βgal。

*活细胞添加Bafilomycin A1的原因:请参阅常见问题“为什么添加Bafilomycin A1?”。

特点2:可定量检测

 

细胞衰老与细胞周期

细胞衰老与细胞周期之间的关系

阿霉素(DOX)会作用于细胞周期的G2/M期,抑制细胞增殖,并诱导细胞衰老。将DOX加入A549细胞后,G2/M期的峰值升高 (Cell Cycle Assay Solution Blue and Deep Red)衰老指标SA-β-gal增强(细胞衰老检测试剂盒-SPiDER-βGal)以及细胞线粒体膜电位降低(JC-1 MitoMP Detection Kit)。

 

实验例

与其他细胞衰老标记物的共染色

本实验是使用本试剂盒对细胞衰老的常用模型多次传代的Wl38细胞 (Passage 的 SA-βgal 进行检测的实例a)。与其他的细胞衰老标记物γH2AX DNA损伤标记物)的免疫染色b),以及全细胞的核染色(DAPI)c)。SA-βgal和γH2AX两种细胞衰老标记物的实验结果相关性得到了验证。d)

1)将传代1次和10次的Wl 38细胞按照本试剂盒的说明书的“活细胞检测”步骤进行SA-βgal染色。

2)添加4% PFA/PBS,室温培养15 min。

3)PBS清洗细胞3次。

4)加入0.1% Triton X 100/PBS,室温培养30 min。

5)PBS清洗细胞3次。

6)添加1% BSA/PBS,室温培养1 h。

7)用1% BAS/PBS稀释过的抗γH2AX抗体(兔源)加入至细胞后,过夜培养。

8)PBS清洗细胞3次。

9)用1% BAS/PBS稀释过的抗兔二抗(Alexa Fluor 647)加入至细胞后,室温培养2 h。

10)PBS清洗细胞3次。

11)用PBS稀释至 2μg/ ml 的 DAPI 溶液 同仁货号: D523]加入到细胞中,室温培养10 min 。

12)PBS 清洗细胞3 次,用激光共聚焦显微镜观察。

固定WI-38细胞中SA- β-gal与DNA损伤标记物共染

SPiDER-βGal工作液配制

用pH 6.0的McIlvaine 缓冲液稀释SPiDER-βGal DMSO储存液2,000倍。

*固定操作和细胞膜通透性可能会导致灵敏度降低(图1),如果您需要更高的信号,可以将McIlvaine buffer稀释SPiDER-βGal DMSO储存液的倍数调整为500-1000倍(图2)。

McIlvaine buffer(pH6.0)的制备

将3.7ml 0.1 mol/l的柠檬酸溶液和6.3ml 0.2 mol/l的磷酸钠溶液混合。确认pH为6.0,如pH不是6.0,则可通过添加柠檬酸溶液或磷酸钠溶液来调价pH。使用超纯水将该缓冲液稀释5倍。

染色步骤(35 mm 培养皿)

1. 在35 mm 培养皿中接种细胞后,在37℃,5% CO2培养箱中过夜培养。

2. 去除培养基,用2 ml PBS洗涤1次后,加入2 ml 4%的多聚甲醛(PFA)/PBS溶液,在室温固定3 min。

*避免延长培养时间,否则容易导致SA-β-gal活性降低

3. 去除上清液,用2 ml HBSS洗涤3次。

4. 加入2 ml SPiDER-βGal工作液后,在37℃培养30 min。

*用固定细胞检测SA-β-gal时,请不要使用5% CO2培养箱。如果使用5% CO2培养箱,SPiDER-βGal工作液会变成酸性,与内源性β-galactosidase发生反应,背景会上升,很难区分正常细胞和衰老细胞。

5. 去除上清液,用2 ml PBS洗涤2次。

6.在细胞中加入0.1% Triton X-100/PBS,并在室温下培养30分钟。

7.用PBS洗涤细胞2次。

8.向细胞中加入1% BSA/PBS,并在室温中培养1小时。

9.向细胞中加入1% BSA/PBS稀释的抗γ-H2AX抗体(小鼠),并在4℃孵育过夜。

10.用PBS洗涤细胞3次。

11.向细胞中加入1%BSA/PBS稀释的抗小鼠二抗(Cy5),并在室温下孵育1小时。

12.用PBS洗涤细胞两次,并在荧光显微镜下观察。

SA-β-gal检测T细胞(悬浮细胞)

爱媛大学医学院Masakatsu Yamashita教授的研究小组表明,一种叫做menin的蛋白质可以控制T细胞的衰竭和衰老,并维持其正常的免疫功能。

这次通过使用的SPiDER-βGal染色结果确认,我们证实了在白细胞介素2(IL-2)的存在下,对敲除Menin蛋白的CD8阳性细胞通过刺激TCR(T细胞受体),会发生细胞衰老。

染色条件:

① SPiDER-βGal 方法

② X-gal 方法

*数据由爱媛大学医学系Masakatsu Yamashita教授提供

用共聚焦成像细胞仪进行定量用

用共聚焦成像细胞仪(横河电机株式会社CQ1 )进行衰老细胞定量分析。

■与其他细胞衰老标记物共染色用

SPiDER-βGal 对 SA-β-gal 进行活细胞染色并进行细胞固定和膜透过处理后,对DNA损伤标志物γH2AX进行免疫荧光染色的 WI-38 细胞,通过共聚焦定量成像细胞仪进行定量和分析。

定量解析

散点图(Scatter Plot)

使用SPiDER-βGal对SA-β-gal 进行染色,其荧光强度作为 Y 轴,以 γ H2AX 的面积与每个细胞核的面积的比值作为 X 轴做成散点图的定量分析。

活细胞荧光染色的分析

X-gal法需要用目视观察总细胞数和衰老细胞的个数,并人工计算衰老细胞的阳性比率。

而使用共聚焦定量成像细胞仪时,用核染色剂(Hoechst 33342)来计数总细胞数 SPiDER-βGal对 SA-β-gal 进行染色来计算衰老细胞数,即可获得衰老细胞的阳性比率。

横河电机

CQ01 拍摄条件

使用孔板:96 孔板

物镜:10 倍

拍摄波长:405 nm Hoechst 33342 Cyan

488 nm (SPiDER-βGal Green)

视野:8视野

*SA-β-gal阳性Wl-38细胞(红色轮廓)

WI-38细胞中的SA-β-gal阳性细胞比例的差异取决于传代次数。与使用X-gal染色方法的手动计数操作相比,使用共聚焦可以快速分析数据。

SA-β-gal的荧光成像

1. 在35 mm μ-Dish(ibidi公司) 中分别接种传代数为0代和12代的Wl-38细胞 (5×10^4 个/dish、 10% FBS、1%青霉素-链霉素的MEM培养基) 后,在37℃、5% CO2培养箱中过夜培养。

2. 去除培养基,用2 ml HBSS洗涤1次。

3. 加入1 ml Bafilomycin A1工作液后,在37℃,5% CO2培养箱中培养1 h。

4. 将1 ml SPiDER-βGal 工作液和1 μl浓度为1 mg/ml 的Hoechst 33342溶液混合后加入培养皿中,在37℃、5% CO2培养箱中培养30 min。

5. 去除上清液,用2 ml HBSS洗涤2次.

6. 加入2 ml HBSS后,用共聚焦荧光显微镜观察(激发波长:488 nm,发射波长:500-600 nm)。

用流式细胞仪定量分析SA-β-gal阳性细胞

1. 在35 mm μ-Dish (ibidi公司) 中分别接种传代数为1代和12代的Wl-38细胞(1×105 个/dish,含有10% FBS,1%青霉素-链霉素的MEM培养基)后,在37℃、5% CO2培养箱中过夜培养。

2. 去除培养基,用2 ml HBSS洗涤1次。

3. 加入1 ml Bafilomycin A1工作液后,在37℃、5% CO2培养箱中培养1 h。

4. 加入1 ml SPiDER-βGal工作液后,在37℃,5% CO2培养箱中培养30 min。

5. 去除上清液,用2 ml HBSS洗涤2次。

6. 用胰蛋白酶消化细胞,将细胞用MEM培养基 (含有10%的FBS、1%的青霉素-链霉素)重悬。

7. 用流式细胞仪检测 (激发波长:488 nm,发射波长:515-545 nm)。

 

常见问题Q&A

Q1: 本试剂盒的大概可以检测多少次?
A1:大概的检测次数,请参考下表中不同的使用容器:

35mm dish Micro Plate Chamber Slide
使用次数 5  dishes 2 plates 7 slides

*使用次数会随着每孔添加的染色溶液量的变化而变化。使用前请先确认每孔的必要的染色溶液量。
Q2: 为什么要添加Bafilomycin A1?
A2:很多细胞内部都存在内源性β-半乳糖苷酶 (β-galactosidase),由于SPiDER-βGal与内源性β-半乳糖苷酶和细胞衰老的标记物SA-β-Gal都会发生反应。即使在没有衰老的细胞中,背景也较高,妨碍了SA-β-Gal的检测。

Bafilomycin A1可以抑制溶酶体中的ATPase活性,并将溶酶体中的pH从酸性变为接近中性,从而降低了内源性β-半乳糖苷酶的活性。因此,在添加SPiDER-βGal之前先用Bafilomycin A1处理细胞,使得SPiDER-βGal可以与SA-β-gal反应,并对衰老细胞进行荧光染色。

下图显示了添加和不添加Bafilomycin A1时检测SA-β-gal的差异。

由于Bafilomycin A1也被用作自噬的抑制剂。使用时,请考虑是否会对实验体系有影响,如果有影响,建议固定细胞。细胞固定时,缓冲液会控制细胞内的pH,所以不需要使用Bafilomycin A1。可以参照操作说明书中的步骤进行染色。

Q3: DMSO stock solution 可以稳定保存多久?
A3: SPiDER-βGal DMSO stock solution和Bafilomycin A1 DMSO stock solution配制后,-20℃可以稳定保存1个月。
Q4: Working solution可以稳定保存多久?
A4: SPiDER-βGal working solution和Bafilomycin A1 working solution无法长期保存,请现配现用。
Q5: 做细胞衰老的荧光观察时有哪些注意事项?
A5: 随着细胞的衰老,被称为脂褐素(Lipofuscin)的不溶性物质会在细胞中积聚。 脂褐素自身会产生荧光,进而增加荧光背景。 在这种情况下,我们建议您准备不含SPiDER-βGal的样品,以准确评估衰老细胞中的SA-β-gal活性。
流式细胞仪检测
・测定“衰老细胞”和“正常细胞”的平均荧光强度(MFI)
①添加了SPiDER-βGal的细胞
②未添加SPiDER-βGal的细胞 (背景)
・“①的平均荧光强度”减去“②的平均荧光强度”
用扣除背景后的SA-β-gal的荧光来表征SA-β-gal的活性。
a:SA-β-gal活性(衰老细胞):=①的平均荧光强度 – ②的平均荧光强度
b:SA-β-gal活性(正常细胞):=①的平均荧光强度 – ②的平均荧光强度
・通过比较上述a和b的值来评价SA-β-gal的活性。
另外,通过a减去b的差值可以确定细胞衰老所引起的SA-β-gal活性的变化。
荧光显微镜检测
・首先,使用未添加SPiDER-βGal的衰老细胞进行荧光观察。
・调整灵敏度(Gain等),直至来生自脂褐素的荧光(背景)不影响荧光图像为止。
・在相同的成像条件下,再对添加了SPiDER-βGal的细胞或正常细胞进行荧光观察。
Q6: 细胞固定后还可以对SA-β-gal进行染色吗?
A6: 可以。如果固定细胞,则不需要用Bafilomycin A1预处理细胞,但是需要制备pH调节至6的Mcllvain Buffer。详细的操作请参考操作说明书。
Q7: 请问是否有细胞固定后进行流式细胞仪操作的具体步骤?
A7: 可以。但是请注意细胞固定可能会影响SA-β-gal(请参考下面的*2)
以下的实验例供作参考。
WI-38细胞固定后,进行SA-β-gal检测和γ-H2AX (DNA损伤标志物)的免疫染色。
<实验操作>
(1) 将WI-38细胞播种至35 mm dish,37℃,5% CO2培养箱中过夜培养。
(2) 去除上清,加入2 ml 4% Paraformaldehyde/PBS溶液,室温培养3 min*1。
(3) 用2 ml PBS清洗细胞3次。
(4) 添加2 ml SPiDER-βGal working solution *2, 37℃培养30 min*3。
(5) 用2 ml PBS清洗细胞2次。
(6) 加入2 ml 0.1% Tritox X-100/PBS, 室温培养30 min。
(7) 用2 ml PBS清洗细胞2次。
(8) 加入 2ml 1% BSA/PBS溶液,室温培养1 h。
(9) 用1% BSA/PBS溶液稀释过的抗γ-H2AX IgG(小鼠来源),加入至细胞后室温培养1 h (10) 用2 ml PBS清洗细胞3次。

(11) 用1% BSA/PBS溶液稀释过的抗小鼠IgG(Cy5标记),加入至细胞后室温培养1 h。

(12)去除上清,用2 ml PBS清洗细胞2次后进行荧光显微镜观察。

*1 细胞固定时间越长,对SA-β-gal活性的影响越高。
*2 细胞固定操作有可能会降低SA-β-gal的活性。如果检测SA-β-gal时,荧光强度较弱,请尝试将SPiDER-βGal DMSO stock solution 稀释500-1000倍使用。通常SPiDER-βGal DMSO stock solution 建议用Mcllvaine buffer (pH 6.0)稀释2,000倍使用。
*3 培养时不使用5% CO2培养箱。细胞固定后使用5% CO2培养箱的话,缓冲液会变为酸性,从而使得内在性β-galactosidase的活性上升,导致背景升高,无法辨别衰老细胞和年轻细胞的内的SA-β-gal活性的差值。
<实验数据>

图1. 免疫染色前后SPiDER-βGal染色的荧光强度变化
通过比较免疫染色前后的SPiDER-βGal的荧光强度,可以发现固定后的免疫染色过程中SPiDER-βGal的荧光强度降低了。

图2. 不同稀释倍率的SPiDER-βGal染色结果 (免疫染色后)

红色:SPiDER-βGal 蓝色:γ-H2AX <曝光时间: 1.5 s>
通过将SPiDER-βGal工作溶液的稀释比从2000倍更改为666倍,可以确认通过免疫染色(固定化)降低的SPiDER-βGal荧光强度与免疫染色前的强度相当。
Q8: 染色操作后发现荧光很弱,无法观察,请问是否有改善的方法?
A8: 请确认如下三个注意事项。
①使用的滤光片是否与染色试剂匹配。
<推荐的滤光片>
· 荧光显微镜:激发(500-540 nm),荧光(530-570 nm)
· 流式细胞仪:激发(488 nm), 荧光(500-540 nm)
②各working solution是否为现配现用。
③延长染色时间
添加SPiDER-βGal working solution后,培养30 min后无法观察到荧光的话,考虑延长至45-60 min再进行荧光观察。
Q9: 确认含有SA-β-Gal的细胞染色后,是否可以进行细胞固定?
A9: 可以。建议使用4%的多聚甲醛进行细胞固定。
Q10: 培养基中的血清和酚红是否会影响检测?
A10: 培养基中的血清和酚红对SA-β-gal的检测没有影响。
Q11:衰老细胞和正常细胞没有差异时,应该怎么确认?
A11: STEP1:优化显微镜的观察条件。

STEP2:如果优化观察条件仍无法解决,请对染色条件进行优化。
STEP1<优化显微镜的观察条件>
如果衰老细胞和对照组细胞之间的荧光强度没有差异,请按照以下步骤进行调整。
1. 观察对照组细胞,通过降低激发光强度,Gain值或缩短曝光时间等条件将仪器调节至可以观察到微弱荧光的状态。
(共聚焦显微镜:调整Gain值、激发光强度 落射型显微镜:调整曝光时间)
2. 慢慢增强激发光强度,延长曝光时间,观察衰老细胞的荧光变化,寻找到衰老细胞和对照组细胞之间的最大荧光差异的条件。
·如果两者荧光没有差异,请参考STEP2。
※请使用玻璃底的培养皿容器观察。
STEP2<染色条件的优化>
根据不同的细胞种类,可能需要调整SPiDER-βGal的染色时间和工作液浓度。
以下为最佳条件的参考数据。
染色时间:10-60 min
染色浓度:说明书中1/2-2倍的浓度
分别加入不同浓度的工作液,并调整不同的染色时间,寻找到衰老细胞和对照组细胞之间的最大荧光差异的条件。
*如果观察的细胞数少的话,有可能灵敏度不够。必要时,需要调整细胞数量

Q12.如何准备药物阳性对照组
A12:参考如下案例

衰老诱导(阿霉素处理的WI-38细胞)

1.将第3代的WI-38细胞(1×10^6细胞/皿,MEM,10%胎牛血清,1%青霉素-链霉素)接种在10 cm培养皿中,并在5%CO2中于37℃培养箱中培养过夜。
2.除去培养基,并用10 ml PBS洗涤细胞一次。
3.用无血清MEM制备0.2μmol/ L的阿霉素。 如果没有无血清的培养基,可以使用含血清的培养基。
4.向培养皿中加入阿霉素(10 mL),并在5%CO2培养箱中于37℃培养3天。
5.除去上清液,并用10 ml PBS洗涤细胞一次。
6.向培养皿中加入MEM(10%胎牛血清,1%青霉素-链霉素),并在5%CO2恒温箱中于37℃培养3天。
7.除去培养基,并用10 ml PBS洗涤细胞一次。
8.胰酶消化细胞,分别用阿霉素和不用阿霉素处理。
固定细胞成像
1.在8孔ibidi中准备细胞进行测定,并在5%CO2恒温箱中于37℃过夜培养细胞。
2.除去培养基。 用PBS洗涤细胞一次。 向细胞中加入4%多聚甲醛(PFA)/ PBS溶液,并在室温下孵育3分钟。
3.除去上清液。 用PBS洗涤细胞两次。
4.混合SPiDER-βGal工作溶液(2 mL)和1mg / mL Hoehst 33342(2μl)。 将混合溶液(200μl)加入孔中,并在37℃孵育30分钟。
*我们建议不要在固定细胞实验中使用5%CO2培养箱。如果在5%CO2培养箱中进行培养,则缓冲液的pH值可能会呈酸性。 酸性pH导致内源性β-半乳糖苷酶活性的背景升高,因此很难区分正常细胞和衰老细胞。
5.除去上清液。 用PBS洗涤细胞两次。
6.在荧光显微镜下观察细胞。